

Django Stretch

Elasticsearch for Django, Made Friendly

Stretch lets you index and search Django models in Elasticsearch. It sits on top of the elasticsearch_dsl package for easy access to most of Elasticsearch’s features.

See the complete Documentation [http://django-stretch.readthedocs.io/en/latest/index.html]

Installation

Currently you can only install django-stretch via git.

pip install git+git@github.com:cbredev/django-stretch.git

Quickstart

	Make sure you have Elasticsearch installed

	
	Add to INSTALLED_APPS

	INSTALLED_APPS = (
 ...
 'stretch',
)

	
	Create a stretch_indices.py file in one of your apps

	from stretch.indices import StretchIndex
from stretch.signals import RealtimeSignalHandler
from elasticsearch_dsl import String
from yourapp.models import Foo

class FooIndex(StretchIndex):
 name = String(source='name')
 bar = String(source='get_bar')

 class Meta:
 # Specify the model to track with this index
 model = Foo
 index = 'foos' # (Optional) specify a custom index name
 doc_type = 'deal' # (Optional) specify a custom doc type

 # (Optional) Specify any custom index settings
 index_settings = {
 'number_of_replicas': 1
 }
 # Automatically track model updates in realtime or with celery
 signal_handler = RealtimeSignalHandler

 # The bar field is populated by this custom method
 def get_bar(self, obj):
 return 'custom value'

	
	Create the index & add all the documents

	./manage.py stretch_update_all

Your models are now being indexed in Elasticsearch!

Features

	Specify custom analyzers and other field attributes

	Dynamically update mapping and per index settings

	Django Rest Framework (DRF) Search Filter

	Management Commands to update indices and documents

	post_save / post_delete signals

Philosophy

Stretch sits on top of the Elasticsearch DSL python library. This makes it really easy to create document mappings and use custom analyzers in a declarative, pythonic syntax. It also includes an up to date interface for performing complex searches. This tool focuses on making it easy to manage your Elasticsearch indices over the long term as you add new fields and analyzers.

Why not [Haystack|Bungiesearch]?

Both Haystack and Bungieserach are great tools. Haystack works great as a general search engine wrapper, but makes it difficult to use the majority of Elasticsearch’s built in features. Bungiesearch does a slightly better job at this, but does not provide good tooling for adding new analyzers or updating index settings. We wanted a tool that let us easily manage indices as well as documents.

Settings

STRETCH_SETTINGS = {
 'HOSTS': ['localhost'],
 'APPS': None, # If not specified, searches all apps for indices
 'EXCLUDED_INDICES': None, # Manually ignore an index. You can also set the index attribute to `IS_INDEX = False`
 'SIGNAL_PROCESSOR': None, # Set a global default signal processor. None by default
 'TEST': False # Uses a mock backend so you can run tests in your project without trying to make a real connection to Elasticsearch
 'RAISE_EXCEPTIONS': False # By default, Stretch will use a `logging.exception` to notify your application of failures without crashing your threads. If you prefer to have your application fail on write errors, set this to `True`
}

Indexing Documents

The StretchIndex class connects a Django model and an Elasticsearch index. Together with the management commands you

Creating an Index

The minimum settings for an index are at least one field and to specify which model it is associated with.

from stretch.indices import StretchIndex
from elasticsearch_dsl import Text
from yourapp.models import Foo

class FooIndex(StretchIndex):
 """
 Index the Foo model in Elasticsearch
 """
 name = Text(source='name')

 class Meta:
 model = Foo

Tracking Updates

Stretch uses signal handlers to update Elasticsearch documents when a model instance is saved or deleted. There are no signal handlers set up by default, but adding one is really easy.

There are two signal handlers available by default in Stretch: the RealtimeSignalHandler which will update your documents synchronously in Elasticsearch and CelerySignalHandler which will asynchronously update the documents (you must install and configure celery separately).

Warning

Queryset update methods do not trigger the save signal and will not be tracked by default.

...
from stretch.signals import RealtimeSignalHandler

class FooIndex(StretchIndex):
 ...

 class Meta:
 ...
 signal_handler = RealtimeSignalHandler

Fields

Stretch uses the field classes from Elasticsearch DSL [https://elasticsearch-dsl.readthedocs.io/en/latest/index.html] library and accepts all the same arguments, with the addition of the source keyword. The source keyword should be either a model attribute or a method on the StretchIndex class which is used to populate the Elasticsearch field from the model.

from elasticsearch_dsl import Text

class FooIndex(StretchIndex):
 name = String(source='name')
 custom_field = String(source='get_custom_value')

 def get_custom_value(self, obj):
 return obj.first_name + obj.last_name

Django Rest Framework (DRF) Search Filter

Stretch provides a DRF FilterBackend so that you can use Elasticsearch for your API endpoints. After you have a StretchIndex set up for your related model, you can add it to a DRF Viewset.

from stretch.drf import StretchSearchFilter

class FooViewSet(ModelViewSet):
 queryset = Foo.objects.all()
 serializer_class = FooSerializer

 # Use dot syntax to point to your StretchIndex class
 stretch_index = 'example.stretch_indices.FooIndex'

 filter_backends = (
 ...
 # Include the search filter in your ``filter_backends``
 StretchSearchFilter,
 ...
)

Making a Request

When you call your API endpoint, use your DRF SEARCH_PARAM to pass your query. By default the value is search. If you want to use a different query parameter, subclass StretchSearchFilter and set search_param = [your custom value].

curl http://localhost:8000/api/foo?search=[your query]

How it Works

DRF Filters implement a single method filter_queryset just like a normal DRF filter. Stretch takes the incoming queryset and uses it to filter an Elasticsearch query using object IDs. The filter has a

Custom Searches

The DRF filter has a default search that includes fuzzy matching and phrase matching. You can set the default_search_fields on the index to specify which fields to use. By default is searches all top level fields on the index.

class FooIndex(StretchIndex):
 ...

 class Meta:
 ...
 default_search_fields = [
 'field_1',
 'field_3',
 'field_4.autocomplete', # You can use Elasticsearch subfields that use different analyzers!
]

There are two ways to customize the search query. The simplest way is to add a stretch_modify_search method on your DRF view. The filter will automatically pass the Elasticsearch DSL object to that method before executing the search. You can modify the search object or create a new one and return it.

class FooViewSet(ModelViewSet):
 ...
 stretch_index = 'example.stretch_indices.FooIndex'
 filter_backends = (
 ...
 StretchSearchFilter,
 ...
)

 def stretch_modify_search(self, s, view, index, request, queryset):
 s = s.filter('terms', tags=['red', 'fish', 'blue'])
 return s

For more control you can subclass StretchSearchFilter. The only real rule here is to make sure the filter_queryset method returns a queryset.

from stretch.drf import StretchSearchFilter

class CustomSearchFilter(StretchSearchFilter):
 def filter_queryset(self, request, queryset, view):
 """
 Return a deduplicated list of Foo objects by name
 """
 index = self._get_index(view)
 s = self.build_search(view, index, request, queryset)
 search_results = s.execute()

 # Get unique list of Foo object names
 ordered_names = []
 for bucket in search_results.aggregations.names.buckets:
 ordered_names.append(bucket.key)

 # Filter and order queryset by names
 queryset = queryset.filter(name__in=ordered_names)
 distinct_name_pks = queryset.order_by('name').distinct('name').values_list('pk', flat=True)

 preserved = Case(
 *[When(name=name, then=pos) for pos, name in enumerate(ordered_names)]
)
 queryset = Foo.objects.filter(pk__in=distinct_name_pks).order_by(preserved)

 return queryset

 def build_search(self, view, index, request, queryset):
 """
 Use aggregations to get to matching unique Foo names
 """
 s = super().build_search(view, index, request, queryset)

 # Retrieve a list of Foo object names
 s.aggs.bucket(
 'names',
 'terms',
 field='name',
 order={'name_score': 'desc'}
).bucket(
 'name_score',
 'max',
 script='_score'
)
 return s

Index

 nav.xhtml

 Table of Contents

 		
 Django Stretch

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

